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ABSTRACT

Identifying relationships among program elements, such as func-
tions, is useful for program understanding, debugging, and analysis.
We present func2vec, an algorithm that uses static traces to embed
functions in a vector space such that related functions are close to-
gether, even if they are semantically and syntactically dissimilar. We
present applications of func2vec that aid program comprehension.
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1 INTRODUCTION

Apart from writing new code, software engineers spend a sub-
stantial amount of time understanding, evolving, and verifying
existing software. Program comprehension [2] entails inferring a
mental model of the relationships among various program elements.
When available, documentation can aid comprehension, such as
“See Also” sections that list other related functions, but this doc-
umentation is rarely available for low-level functions. For these
functions, programming language features such as polymorphism
and encapsulation can make explicit the relationships between func-
tions, but in languages such as C that are lacking these features,
such relationships remain implicit.

Identifying relationships among functions is challenging because
related functions are often semantically different and syntactically
dissimilar. For example, the functions snd_atiixp_free and snd_
intel8x0_free in the atiixp and intel8x0 Linux device drivers,
respectively, are semantically different, but serve the same purpose
in these device drivers. For this reason, techniques that identify
syntactic and semantic code clones cannot be used [1, 7].
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This paper presents func2vec, a technique that embeds each
function in a vector space such related functions are in close proxim-
ity. Recent work computes such an embedding using abstract syntax
trees or dynamic traces [4, 9]. We are the first to use static traces
to learn an embedding that captures the hierarchical structure of
programs, and the first to apply such a technique to large-scale,
low-level code such as the Linux kernel.

2 TECHNICAL APPROACH

For a given vocabulary L of program functions, func2vec com-
putes an embedding ® : L — R that maps each program function
¢ € L to a d-dimensional vector in R¥. Distributed representations
are often used in natural-language processing (NLP); an embed-
ding is learned from a corpus of sentences so that words sharing
common contexts are embedded near each other. To reuse NLP al-
gorithms requires func2vec to generate a linearized representation
of programs, viz. “sentences” over a given vocabulary, for which
func2vec is the first to use static program paths for this purpose.
Intuitively, if we see many program paths with a call to function
2 after a call to function f1, and paths with a call to 3 after a call
to f1, then 2 and f3 should be embedded close to each other.

A naive approach of linearizing a program by generating a sen-
tence using the instructions along every valid interprocedural path
has the following disadvantages: using the entire instruction set
would generate sentences with a very large vocabulary; there are
too many program paths for this approach to be practical; and it
does not capture the hierarchical structure of programs.

The design of func2vec addresses each of these disadvantages.
The vocabulary size is reduced by func2vec through abstracting
each program instruction. To address the path explosion problem,
func2vec performs a random walk over the program. On encoun-
tering a function call, the random walk either outputs the function
name itself, or decides to step into the function definition. This
strategy is able to capture the hierarchical structure of programs:
the context preceding the function call can be linked to either the
function call itself or to the context in the body of the function being
called. Figure 1 shows the three main components of func2vec.
Program Encoder. func2vec uses a labeled pushdown system
(£-PDS) to model the set of valid interprocedural paths in the pro-
gram. An £-PDS is a PDS [6] in which each rule is associated with a
sequence of labels, and these labels are concatenated as the £-PDS
makes its transitions. We associate a unique label for each instruc-
tion category (e.g., load, store), struct type (the instruction loads
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Figure 1: func2vec Architecture
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Figure 2: Visualization of func2vec relationships

or stores to a struct variable), and function (the instruction is a
function call). We use a mostly standard way of encoding an inter-
procedural control-flow graph (ICFG) of a program as a PDS with
one main difference: given a call to function f whose entry node
is ef on the ICFG edge n; — ny, we not only add the standard call
rule (p,n1) < (p, ef n2), but also an internal rule (p, n;) < (p, nz).
This internal rule allows the random walker to either step over or
step into the function call.

Random Walker. Given the ¢-PDS for the program, the random
walker generates y paths of length at most k, starting at a call to each
function . For a given start label £, a walk is generated by randomly
selecting a rule associated with label ¢, and initializing the PDS
configuration c. The current configuration c is updated by picking
uniformly at random a next configuration in the £-PDS. Note that
labels are concatenated when the configuration is updated.
Model Trainer. Given the set of walks of the ¢-PDS, func2vec
uses a neural network to learn a vector representation for labels
® : L — R Traditional language models try to estimate the
probability of seeing a label ¢; given the context of the previous
labels in the random walk; viz. Pr (f,-lfl, lo,. .., fi_l). However,
we also want to learn the distributed representation in the form of
an embedding: ® : L — R, Thus, our problem is to estimate the
likelihood: Pr (£;®(£1), ®(€2), .. ., ®(£i-1)). Mikolov et al. [3] in-
troduce an unsupervised-learning technique that uses a single-layer
fully-connected neural network to approximate this likelihood.
Implementation. The £-PDS is constructed from LLVM IR. The
implementation of func2vec uses the implementation of Mikolov
et al. [3] provided by Gensim [5].

3 APPLICATIONS

The embedding computed by func2vec has many applications in
program comprehension. We applied func2vec to a runnable Linux
kernel with approximately 2 million LOC. To process the Linux
kernel, func2vec requires approximately 20G of memory and two
hours of compute time on Amazon EC2 R4 instances.

Subsystem Identification. Functions within subsystems are em-
bedded closer to each other than functions between subsystems.
Figure 2a shows a t-SNE projection of functions in three major
subsystems: sound, networking, and file systems. File systems such
as GFS2 that rely on networking are closer to the networking com-
ponent than local-only file systems.

Identifying Function Synonyms. We define function synonyms
to be functions that play the same role in different components.
Function synonyms are close together in the func2vec embedding,
forming clusters by role. Figure 2b shows such clusters of function
synonyms in the PCI sound drivers. Function synonyms in Linux

often follow a naming convention, such as snd_via82xx_free and
snd_cmipci_free forthe via82xx and cmipci sound drivers. How-
ever, function synonyms do have different names; acpi_video_
get_brightness and intel_panel_get_backlight each return
the brightness level of the backlight. Conversely, functions with
similar names are not synonyms; rcu_seq_start adjusts the cur-
rent sequence number, while kprobe_seq_start merely returns
the current sequence number.

Analogical Reasoning. The relationship between OCFS2 Dis-
tributed Lock Manager (DLM) locking and unlocking is captured
by the analogy dlmlock : dlmunlock ocfs2_dlm_lock : 2.
Figure 2c shows a PCA plot of four functions belonging to the DLM.
Similar analogies can be answered for other DLM locking and un-
locking pairs, such as dlmlock_remote and dlmunlock_remote.
Alignment. The func2vec embedding can be used to match func-
tions between related components. Figure 2d shows a t-SNE projec-
tion of TCPv4 and TCPv6 function pairs that have been matched
via Procrustes alignment [8].

Specification Mining. Function embeddings can be used to im-
prove the quality of mined specifications. Often there are not
enough supporting examples for a specification within a single
implementation, such as a single driver or file system. By merging
specifications across multiple implementations, using function syn-
onyms identified by func2vec, the support for a specification can
be dramatically increased.
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